Evidence of Leading Circle Reentry
نویسندگان
چکیده
Background Slight variation in cycle lengths of common and rapid atrial flutter in humans is an established phenomenon, but its mechanisms have not been completely clarified. In a previous study, we demonstrated that in common atrial flutter the variations in atrial cycle length were due to atrial stretch affecting the revolution time of a reentrant circuit. In the present study, we investigate the nature of atrial cycle length variations in the rapid type of human atrial flutter. Methods and Resuls Atrial interval variations of 17 episodes of rapid atrial flutter in 14 patients were investigated by measuring the sequence of atrial intervals from intraesoph*ageal or intra-atrial leads and the onset of QRS complexes from a surface lead (V1). To study whether interval variation in flutter cycle was related to ventricular activity, a phase plot was constructed in which the flutter cycle length was plotted against the time after the previous QRS complex. This showed that the interval fluctuations were strictly coupled to the moment of ventricular activation. After the onset of the QRS complex, the rapid atrial flutter interval gradually decreased by an average of 4.1% (P<.001) and reached a minimum value after 300 to 600 milliseconds. Thereafter, the intervals increased again until the next ventricular beat occurred. In 10 patients developing both common and rapid atrial flutter, two different phase relations were found. Whereas during common atrial flutter the atrial interval increased after the QRS complex, it decreased during rapid atrial flutter. In three patients, intra-atrial pressure was recorded together with the electrical activity during both common and rapid atrial flutter episodes. This showed that variations in atrial flutter cycle length were associated with the rise of atrial pressure during ventricular contraction. Conclusions These findings indicate a role of contractionexcitation feedback caused by atrial stretch after a ventricular activation. The shortening of the atrial interval after the onset of the QRS complex as found in patients during rapid atrial flutter can be explained by stretch-induced shortening of atrial refractoriness and consequent shortening of the revolution time of a functionally determined intra-atrial circuit. (Ciultion. 1994;89:.2107-2116.)
منابع مشابه
Interaction of inhomogeneities of repolarization with anisotropic propagation in dog atria. A mechanism for both preventing and initiating reentry.
Having found the regional differences in right atrial action potentials shown in an accompanying article, we tested two seemingly paradoxical hypotheses: 1) The spatial pattern of repolarization provides a protective mechanism against reentry, and 2) repolarization inhomogeneities interact with anisotropic discontinuous propagation to produce reentry. Measurement of multidimensional refractory ...
متن کاملOptimal Trajectory Study of a Small Size Waverider and Wing-Body Reentry Vehicle at Suborbital Entry Speed of Approximately 4 km/s with Dynamic Pressure and Heat Rate Constraint
A numerical trajectory optimization study of two types of lifting-entry reentry vehicle has been presented at low suborbital speed of 4.113 km/s and -15 degree entry angle. These orbital speeds are typical of medium range ballistic missile with ballistic range of approximately 2000 km at optimum burnout angle of approximately 41 degree for maximum ballistic range. A lifting reentry greatly enha...
متن کاملMechanisms of the dynamics of reentry in a fibrillating myocardium. Developing a genes-to-rotors paradigm.
Because the myocardium was considered to behave structurally as a continuous medium, for many years attention focused on spatial variations in the membrane properties, which allow some cells to recover excitability faster as the mechanism for reentry.1 This mechanism still holds its place as a major underlying cause of many arrhythmias; eg, the long-QT syndrome.2 In the early 1980s, a second ge...
متن کاملThe Multidisciplinary Design Optimization of a Reentry Vehicle Using Parallel Genetic Algorithms
The purpose of this paper is to examine the multidisciplinary design optimization (MDO) of a reentry vehicle. In this paper, optimization of a RV based on, minimization of heat flux integral and minimization of axial force coefficient integral and maximization of static margin integral along reentry trajectory is carried out. The classic optimization methods are not applicable here due to the c...
متن کاملA Three Stage Terminal Fuzzy Guidance Law for Reentry Vehicles
An advanced guidance law is developed for reentry phase of a reentry vehicle. It can achieve small miss distance and desired impact attitude angle, simultanceously. To meet this requirment a guidance law based on the fuzzy logic approach is developed. It is partitioned into three stages. This guidance law does not require linearization of missile engagement model. Line-of-sight and flight path ...
متن کاملVentricular Fibrillation During Early Myocardial Ischemia
The mechanisms underlying the development of ventricular fibrillation (VF) during early myocardial ischemia were assessed by use of a computerized three-dimensional mapping system capable of recording simultaneously from 232 intramural recording sites throughout the entire feline heart in vivo. Occlusion of the proximal left anterior descending coronary artery led to ventricular tachycardia (VT...
متن کامل